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Abstract—It is widely believed that in order to obtain the desired 
output from a composite system, the basic properties of the system 
plays an important role. While working with technologies like neural 
networking, Machine learning, Artificial Intelligence, Speech 
technology the basic properties became very prominent. This is 
supported empirically that the difficulty of recovering the hidden 
information or retrieving the original source signals from an 
unknown mixed signals, is a difficult process. In this paper, we 
explain one of the techniques of Blind Source Separation using 
Independent Component Analysis (ICA) in term of inevitability of the 
system and also prove the point that in order to implement Blind 
Source Separation using ICA algorithm the system needs to be 
invertible. To support the concept of inevitability of an ICA algorithm 
an experimental work is performed, where a neural network is 
designed to separate the source signals from a two component mixed 
signal. This paper is the comprehensive study of source separation 
using ICA which allow us to understand the basic fundamentals of 
ICA algorithm. The application of BSS in the field of Speech 
technology is limitless; it is widely used in noise separation, 
dimension reduction, encryption of hidden data. 

Introduction 
From the last two decades, with the growth of modern 
technological invention of high and fast computing system, 
scientists are basically focused in the field of machine learning 
and Artificial Intelligence and are trying to develop algorithms 
which make machines eligible to respond exactly as the 
human brain does. These algorithms include supervised Un-
supervised and reinforcement learning. In this paper, we focus 
on supervised learning of speech signals for a problem known 
as Blind Source Separation using Independent Component 
Analysis in terms of invariability of the system.  

A system is the interconnection of subsystems. A system can 
also be viewed as a process in which input signals are 
transformed by the system to behave or respond in some 
particular way. An application like chemical processing, signal 
processing, Machine Learning and Artificial intelligence 
required precise and high accuracy output [1]. All these are 

possible with the help of the control system. For example, a 
high fidelity system takes a recorded audio signal and 
generates a reproducing signal. If the system has tone controls, 
we can change the tonal quality of the reproduced signal that 
is nothing but a control system [1]. Generally, the control 
system is LTIs (Linear Time Invariant) systems, and if we add 
the property of invariability with the control system it can be 
used for the variety of applications ranging from encryption of 
the original message for secure or private communication, 
Blind Source Separation (BSS) and so on [1]. In this paper, a 
comprehensive study on BSS has been made in terms of 
system and its analogy is made between the basic ideas of 
invariability of a system with Blind Source Separation. 

Invertible System 
A system can be considered as an invertible system if it obeys 
one-to-one mapping or a system is said to be invertible if its 
distinct inputs can produce distinct outputs [1]. In another 
term, it can also be defined as a system if we can get back the 
input X(t) or X[n] by passing the output Y(t) or Y[n] through 
another system called an inverse system. An invertible system 
must thus contain an inverse system. Fig.1(a) and Fig.1(b) 
shown below represents One-to-One mapping and Many-to-
One mapping systems. 

 
Fig.1(a):One-to-One Mapping Fig.1 (b): One-to-Many 

Mapping 
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Where m is the number of available samples (mixtures) and T 
is the number of observations. 

In equation(8), ARm*n denotes the unknown mixing and n 
denotes the number of sources; V Rm*T is a mixing matrix 
representing the noise and ‘S’ contains the unknown source 
signal. BSS aims at finding the un-mixing matrix W such that 
[4]: 

S = W * X     (10) 

Basically, there are two main approaches (ICA and PCA) used 
for BSS but from the application point of view, it has been 
found that for speech Blind Source Separation ICA works far 
better than Principal Component Analysis. It is because in 
case of ICA, all the source components are considered 
mutually statistically independent [5]. 

There are some assumptions to be considered before 
implementing Blind Source Separation [5]: 

1. The sources being considered are statistically 
independent. 

2. The independent components have a non-Gaussian 
distribution. 

3. The mixing matrix is invertible. 

Among the three assumptions mentioned above the most 
appalling assumption is the invertibility of the matrix. Next, in 
section (IV) we tried to explain the invertible architecture of 
Blind Source Separation. 

Invertible Architecture of Blind Source Separation using 
ICA 

The most important block of a supervised Blind Source 
Separation using ICA is the reversible block which consists of 
a un-mixing matrix. The matrix defines the actual concept of 
Blind Source Separation. The retrieving of the original source 
signal from a mixed signal through an artificial neural network 
can be accomplished by reducing redundancy between the 
signals. This approach generally leads to an algorithm called 
Independent Component Analysis (ICA).  

ICA is based on, one of the powerful assumptions that the 
different physical processes generate completely different 
signals [5]. In ICA source signals are separated, considering 
that the original source signals are distributed independently 
and there feature extraction data points are completely unique. 
ICA is often described as an extension to Principle Component 
Analysis (PCA) which generates a non orthogonal basis by un-
correlating the signals for larger order moments and produces 
a non-orthogonal basis. In ICA algorithm the sources are 
generated linearly where additive noise can be present. [5]. 

Suppose we obtain a set of N observation signals 

Xi(t), i=1, 2, 3…,N through sensors (microphone), that are 
mixtures of the sources, the main idea behind the mixing 
process is that the microphones can be randomly placed at 

certain distance so that each sensor records a different mixture 
of the source signals. With the spatial separation assumption 
in mind, we can model the mixing process: 

X = AY     (11) 
 
The defined model can be considered as a system which 
produces a mixed signal from a set of observation signals. 
Where X and Y are the two vectors representing the observed 
signals and source signals respectively and A is an unknown 
matrix called the mixing matrix [5]. 

Here the main objective is to remove the original signals, Si 
from the observed vector Xi. Which is accomplished by 
obtaining the un-mixing matrix W, the W matrix is designed 
such that W = A-1. This enables to estimate the original source 
signals separately, S. The estimating matrix W can be 
considered an inverse system of the first system. 

S = S’ = W × X    (12) 
where S is original source signal and S’ is the separated source 
signal. 

Better the estimation of the un-mixing matrix better will be the 
approximation of the sources signals. The best condition of 
ICA to be executed is that the number of sources and sources 
are equal must be equal. Unfortunately, the ideal condition 
source separation might not be the situation always. There 
might be more two conditions where the numbers of the 
sensors are not equal to the number of sources; these are called 
Over-complete ICA and Under-complete ICA [5]. 

1) Over-complete ICA: It is an ICA source separation 
problem which occurs when the numbers of sources are 
more than number of recording sensors.  

2) Under-complete ICA: It is an ICA source separation 
problem which occurs when the numbers of sources are 
less than number of recording sensors.  

Concentrating on the case of Over-complete ICA where the 
number of sources exceeds the number of recording x1(t) and 
x2(t) from three independent sources s1(t), s2(t) and s3(t). The 
coefficients depend on the distances between the sources and 
the sensors. 

 
Fig. 4: Over-complete ICA 
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x1(t) = a11s1(t) + a12s2(t) + a13s3(t)   (12) 

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)   (13) 

The aij are constant coefficient that gives the mixing weights. 
The mixing process of these vectors can be represented in the 
matrix form as shown below. 

ቂ
xଵ
xଶ
ቃ ൌ ቂ

aଵଵ aଵଶ aଵଷ
aଶଵ aଶଶ aଶଷ

ቃ ൥
sଵ
sଶ
sଷ
൩ 

The un-mixing process and estimation of sources can be 
written as- 

቎
s′ଵ
s′ଶ
s′ଷ

቏ ൌ ൥
wଵଵ wଵଶ
wଶଵ wଶଶ
wଷଵ wଷଶ

൩ ቂ
xଵ
xଶ
ቃ 

Here, the matrix A of size 2 × 3 and un-mixing matrix W is of 
size 3 × 2. Hence computation of sources in over-complete 
ICA requires some estimation processes [5]. 

Let us consider, 

x1(t) = a11s1(t) + a12s2(t) 

x2(t) = a21s1(t) + a22s2(t) 

Here, 

x1(t) ≠ x2(t)   (14) 

Since all the coefficients say aij; i,j=1, 2, 3….N are randomly 
generated weights. 

Suppose we have, 

x1(t), x2(t), x3(t) ,…, xN(t) numbers of observation signals. 

s1(t), s2(t), s3(t) ,…, sN(t), numbers of source signals then 
mathematically can be written as- 

቎
xଵሺtሻ
xଶሺtሻ
xଷሺtሻ

቏ ൌ ଷൈଷۯ ቎
sଵሺtሻ
sଶሺtሻ
sଷሺtሻ

቏    (15) 

૜ൈ૚ࢄ	 ൌ  ૜ൈ૚     (16)ࡿଷൈଷ࡭

Where, 

ࢄ ൌ ቎
xଵሺtሻ
xଶሺtሻ
xଷሺtሻ

቏ , ܁ ൌ ቎
sଵሺtሻ
sଶሺtሻ
sଷሺtሻ

቏, 

ۯ ൌ

ۏ
ێ
ێ
ێ
ۍ
aଵଵ
aଶଵ
⋮
⋮

a୫ଵ

aଵଶ
aଶଶ
⋮
⋮

a୫ଶ	

⋯⋯
⋯⋯
⋯⋯
⋯⋯
⋯⋯

aଵ୬
aଶ୬
⋮
⋮

a୫୬ے
ۑ
ۑ
ۑ
ې

 

Equation (16) is the invertible system because of the following 
observations: 

1. Am×n is randomly generated mixing matrix, that is s1x1, 
s2x2,…, sNxN. 

2. It also satisfies the one-to-one mapping. 
Since the above equation can be claimed to be the invertible 
equation, so there must exist an inverse equation. The only 
parameter in the Equation (16) which defines the 
characteristics of the invertibility of the system is the mixing 
matrix A. And ICA algorithm performed BSS by designing an 
inverse system by estimating the un-mixing matrix. 

 

Figure 5: Diagram of final analogy of BSS with invertible system. 

Similarly for the inverse system considering the ideal case 
where (n=m), 

ۻ ൌ ′܁ ൌ  (17) 		.ܖൈܕ܆୫ൈ୬܅

࢔ൈ࢓ࢃ ൌ
૚

࢔ൈ࢓࡭
    (18) 

ܖൈܕ′܁ ൌ  (19)  			ܖൈܕ܆୫ൈ୬܅

Equation (19) is the inverse Equation. Equating Equation (16) 
and (19) the original source signals can be retrieved back with 
some ambiguities like amplitude and order. Since the 
composite system of supervised Blind Source Separation 
consists of a system which has an inverse system of it. Hence, 
supervised Blind source Separation System using ICA 
algorithm can be called an invertible system. 

Experimental Details 

Essential requirement needed to perform Blind source 
separation (BSS) are given below: 

a. Collection and preparation of data-set: Raw speech 
signals (original source signal) have been recorder with 
microphones and then it was mixed through a mixer 
having a fundamental frequency of 8KHz mono. The 
original source signals are used for the training of the 
neural network while mixed data is used for testing. The 
raw data is then converted in Zip format. 

b. Training: During the training of the neural network the 
Zip data is labeled say (signal_1=0, signal_2=1, 
signal_3=2,…,signal_n=N) and then feed to the neural 
network through ICA algorithm. 

c. Testing: Finally for testing, the mixed raw data is fed into 
the neural network, where the ICA algorithm performs the 
source separation and individual signals are obtained from 
the set of mixed signals. 
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